The Birth and Evolution of Brown Dwarfs

Tutorial for the CSPF, or should it be CSSF (Center for Stellar and Substellar Formation)?

Eduardo L. Martin, IfA

Outline

- Basic definitions
- Scenarios of Brown Dwarf Formation
- Brown Dwarfs in Star Formation Regions
- Brown Dwarfs around Stars and Brown Dwarfs
- Final Remarks

Mass

- A brown dwarf is defined primarily by its mass, irrespective of how it forms.
- The low-mass limit of a star, and the high-mass limit of a brown dwarf, correspond to the minimum mass for **stable** Hydrogen burning.
- The HBMM depends on chemical composition and rotation. For solar abundances and no rotation the HBMM= $0.075M_{Sun}$ = $79M_{Jupiter}$.
- The lower limit of a brown dwarf mass could be at the DBMM= $0.012M_{Sun}=13M_{Jupiter}$.

Central Temperature

- The central temperature of brown dwarfs ceases to increase when electron degeneracy becomes dominant. Further contraction induces cooling rather than heating.
- The LiBMM is at $0.06M_{Sun}$
- Brown dwarfs can have unstable nuclear reactions.

Radius

- The radii of brown dwarfs is dominated by the EOS (classical ionic Coulomb pressure + partial degeneracy of e-).
- The mass-radius relationship is smooth $R=R_0m^{-1/8}$.
- Brown dwarfs and planets have similar sizes.

Thermal Properties

- Arrows indicate H₂ formation near the atmosphere. Molecular recombination favors convective instability.
- Brown dwarfs are ultracool, fully convective, objects.
- The temperatures of brown dwarfs can overlap with those of stars and planets.

Density

- Brown dwarfs and planets (substellar-mass objects) become denser and cooler with time, when degeneracy dominates.
- The evolution is governed by the release of contraction work.
- Substellar objects keep cooling and contracting very slowly for ever.

Kirkpatrick et al. 1991,1999,2000; Martin et al. 1997,1998,1999; Burgasser et al. 2000,2001; Leggett et al. 2001; Geballe et al. 2002; Cushing et al. 200?

Spectra

- Two new spectral classes have been defined for ultracool dwarfs.
- The L class is characterized by weak or absent TiO.
- The T class is characterized by CH₄.
- A 35M_{Jupiter} evolves from M-type at 10 Myr to T type at 1 Gyr.

Rotation

- Projected rotational velocities (vsini) have been measured in 22 field dwarfs M9-L6, using the rotational broadening of atomic and molecular lines.
- Average vsini=21km/s.
- Rotation makes the star more degenerate, and increases the HBMM.

Henry 1998; Martin et al. 1999; Goldmann et al. 2000; Reid et al. 2000; Delfosse et al. 2001; Burgasser et al. 2001

The Solar Neighborhood Census

- In 1997, there were 319 objects in 231 systems known within 10 parsecs of the Sun.
- In ~ 4 years, 8 new objects have been added, 5 isolated and 3 companions to stars. SpT: M9-T8.
- The brightest star in the sample is Sirius (Mv=-1.4), the faintest is Gl570D (Mv~31).

The Mass Function

- The spectrum of masses in the 8 pc sample follows a power law of the form: $dn/dm=0.024 \text{ m}^{-\alpha} \text{ M}_{\text{sun}} \text{pc}^{-3}$ with $\alpha=1.2$
- Extrapolation of this MF down to 0.01 M_{sun} yields a BD number density comparable to the stellar one (0.1 pc⁻³), and a factor of 10 lower mass density.

Scenarios of Brown Dwarf Formation

• Brown dwarfs may form in three different environments: 1) In a cluster of objects, where the tend to be ejected. 2) Isolated. 3) Around star, in a disk or envelope.

The Jeans mass

- James Jeans, noted British scientist for his physical analysis of musical sounds, discovered the tendency for a self-gravitating cloud to collapse under its own weight when perturbed by waves with λ longer than $\lambda_{Jeans} = c_S (\pi/G\rho_0)^{1/2}$. Shorter λ are propagated away at the speed of sound. $c_S = (\gamma P_0/\rho_0)^{1/2}$.
- The Jeans mass is the mass enclosed in a sphere of radius $\lambda_{Jeans}/2$. $M_{Jeans} = \pi c_S^3/6G^{3/2}\rho_0^{1/2} \sim T^{3/2}\rho_0^{-1/2}$.

The Jeans's instability criterion

- A medium of average density ρ_0 will be unstable to fragmentation at all λ greater than λ_{Jeans} , hence the medium should break up into masses $\sim M_{Jeans}$.
- During isothermal or cooled collapse M_{Jeans} decreases as ρ_0 increases, leading to hierarchical fragmentation. The process terminates when the fragments become opaque enough to trap their radiation. During adiabatic collapse M_J increases as ρ_0 decreases, leading to opacity limited fragmentation.

Minimum mass of isolated star

formation

- When the rate at which energy is released by the collapse exceeds the rate at which the gas can cool, the fragment heats up and drives M_{jeans} up. A Jeans-unstable collapsing clump becomes Jeans stable. Rotation and magnetic fields increase the value of M_{Jeans}
- The pressure supported fragment has a radius of ~ 5 AU and a mass of several $M_{jupiter}$. The fragment is embedded in a collapsing envelope and continues to accrete to M>10 $M_{iupiter}$

Unstable Multiple Systems

- Most stars form in multiple systems.
- The smaller fragments tend to be ejected from the cloud, cutting them off from the reservoir of gas and dust, and hence preventing them from accreting to a stellar mass.
- Hydrodynamical simulations show that roughly equal numbers of stars and BDs are formed.
- ¾ of the BDs form in discs, and the reminder in filaments. 5% binary fraction. Separation<10AU.

Formation of two BDs via disc fragmentation

Orbital migration

- When a BD forms within 10 AU of a star, inward orbital migration within the evolving protoplanetary disc make the BD merge with the star, causing significant stellar spin-up.
- For migration to occur, the initial disc mass must be at least comparable to the mass of the BD. Thus, this process should not affect very-low mass stars or brown dwarfs.

Rieke & Rieke 1989; Comeron et al. 1993, 1998, 2000; Lucas & Roche 2000, 2001; Martin et al. 2001; Zapatero Osorio et al. 1999, 2000.

Brown Dwarfs in SFRs

- ~60 BDs have been spectroscopically identified in SFRs, such as Chamaeleon, pOph, σOrionis, Serpens, Taurus and the Trapezium.
- No wide binaries (separation>1000AU) have been reported.

Barrado et al. 2001; Bejar et al. 1999; Comeron et al. 2001; Luhman et al. 1999; Martin et al. 1996,1999,2001

Optical spectra of young BDs

- Spectral types can be derived from the strength of TiO, CaH, and VO molecular bands.
- H_{α} is typically in emission.
- Alkali lines (KI, NaI) are weakened at low gravity, which can be used as a spectroscopic signature of youth.

Near-infrared spectra of BDs

- Spectral types can be derived from the strength of H₂O, CO and CH₄ bands.
- Br_y emission is an indicator of mass accretion onto the central object.
- Alkali lines (KI, NaI) are gravity sensitive.

Substellar H-R diagram

- The ages and masses of the young BDs are estimated from comparison with evolutionary models in the Hertzsprung-Russell diagram.
- In σOrionis and the Trapezium, the inferred masses extend down to ~8 M_{jupiter}, below the minimum mass for opacity limited fragmentation.

The substellar IMF

- The relative numbers of stars and BDs in SFRs indicate that the IMF does not change abruptly in the substellar regime.
- The low-mass turnoff of the IMF has not been seen yet. It must be at $<8M_{\text{jupiter}}$
- The star-formation process does not care about the HBMM or the DBMM.

IMF of dusty clumps

- 1.3 mm continuum imaging with IRAM 30-m telescope.
- Dust structures ~
 2000-4500 AU in the ρOph main cloud
- IMF of clumps dn/dm \sim m^{- α} with α =1.5 in the 0.1-0.5 M_{Sun} mass range.

H_α activity

- H_{α} is a diagnostic of hot plasma. It can be caused by a chromosphere or by an accretion boundary layer.
- The average H_{α} emission level in young BDs of the σ Orionis cluster is higher than in the older counterparts of the solar neighborhood.

The GG Tau quadruple system

- GG Tau is comprised of four components shown in this HST/WFPC2 image.
- Two pairs separated by 10".1 (1400 AU). The brighter pair is a 0".25 (35 AU) binary. The fainter pair is a 1".5 (207 AU) binary. Circumbinary disk.
- SpT: K7/M0 for the brighter pair. M5/M7 for the fainter pair.

GG Tau in the H-R diagram

- The four components define an isochrone with which the Teff scale and evolutionary models can be tested.
- Consistent solution with the Baraffe et al. (1998) models and age 1.5 Myr. 0.78,0.68,0.12,0.04M_{Sun}

A Double Brown Dwarf

 Using Keck/AO, the M8.5 companion to the nearby star Gl569 was found to be double, with a separation of 0.1", corresponding to a projected semi-major axis of ~ 1 AU for a distance of 9.8 parsec.

Orbital motion of Gl 569 B and C

- Gl 569 B and C have been monitored with Keck AO since its discovery in August 1999.
- The separation varies from 0.1" to 0.07"

Dynamical Substellar Masses of Gl 569 B and C

- The orbital parameters are: Period=892days, eccentricity=0.3, semimajor axis=0.9AU.
- The masses are substellar, with an allowed range between 0.078 -0.055
 M_{Sun} for Gl569B and 0.070-0.048M_{Sun} for Gl569C.
- The age is ~300 Myr from evolutionary models of brown dwarfs.

AO Survey of M7-M9 Dwarfs

- The Hokupa'a AO system on the Gemini telescope allowed for first time to guide on ultracool M dwarfs with Vmag~20.
- Four binaries discovered with separations in the range 0.15" to 0.57" (4-14 AU) out of a sample of 20 M8-M9 dwarfs.

HST surveys of BD primaries

- ~22 L dwarfs in the solar neighborhood, and ~40
 VLM members of the αPer and Pleiades clusters have been imaged with HST.
- 7 binaries have been identified with semi-major axis ranging from 2.7 to 12 AU.
- Absence of binaries wider than ~ 15 AU.

A Close VLM Companion to a Nearby Solar Analog

- Primary: HR7672, G1V, V=5.8, d=17.7pc
- Companion discovered with Hokupa'a AO/Gemini, separation=0.8",
 8.6 magnitudes fainter than the star in K'-band (2.2 microns).

AO Proper Motion and Spectroscopy of HR7672B

- AO imaging six months after discovery confirms that HR7672B has the same proper motion as the nearby star
- AO-fed spectroscopy with Keck/NIRSPEC gives a spectral type ~L4
- Cumming et al. 1999 had found Msini=66 Mjup.

A Brown Dwarf Binary Close to a Young Solar Analog

- Primary:HR5534,G2V,V=
 5.9, Rotation P=7.8 days,
 active chromosphere,
 likely member of Ursa
 Major stream, age~300
 Myr
- Companion discovered with Hokupa'a AO/Gemini, separation 2.6", 8 magnitudes fainter than star in H-band (1.6 microns).

AO Proper Motion and Spectroscopy of HR5534B and C

- AO observations 204 days after discovery confirm common proper motion.
- Keck/AO NIRSPEC
 spectroscopy of each one
 of the two brown dwarfs
 (separation 0.13" or 2.3
 AU) allow to derive
 spectral type ~L3.

The MF of Extrasolar Planets

- The M2sini distribution of extrasolar planets confine the vast majority of planetary companions to masses below 10 M_{jupiter}
- BDs are rare (<0.1%)
 within 5 AU of low-mass
 main-sequence stars (the
 Brown Dwarf desert).

Final Remarks

- The stellar/substellar boundary is defined by the HBMM. The BD/planet boundary is controversial, but might be defined by the DBMM.
- BDs may form isolated, in unstable multiple systems or around single stars.
- The number density of stars and BDs are similar.
- The lowest mass objects found in SFRs appear to have masses below the DBMM.
- BD binaries appear to be common, but confined to separations < 15 AU.
- BDs are rare within 5 AU of stars, but could be common for separations > 10 AU.